71 research outputs found

    Designs and Implementations of Low-Leakage Digital Standard Cells Based on Gate- Length Biasing

    Get PDF
    Abstract: In this study, a minimum set of low-power digital standard cells for low-leakage applications are developed and introduced into SMIC (Semiconductor Manufacturing International Corporation) 130 nm CMOS libraries, which include basic logic gates such as inverter, NAND, NOR, XOR, XNOR and flip-flop. The inverter, NAND, NOR and flip-flop standard cells based on the gate-length biasing technique are proposed to achieve low Energy Delay Product (EDP). The XOR and XNOR standard cells are optimized based on transistor-level. All circuits are simulated with HSPICE at a SMIC 130nm CMOS technology by a 1.2V supply voltage. The proposed several standard cells attain large leakage reductions. A mode-10 counter is verified with the proposed standard cells by using commercial EDA tools. The leakage and total dynamic power dissipations of the mode-10 counter using the proposed standard cells provide a reduction of 21.27 and 3.06%, respectively. The results indicate the proposed standard cells are a good choose in low leakage applications

    Exclusive Enteral Nutrition versus Infliximab in Inducing Therapy of Pediatric Crohn’s Disease

    Get PDF
    Aim. To compare the effectiveness of exclusive enteral nutrition (EEN) and infliximab (IFX) therapy in pediatric Crohn’s disease (CD). Methods. In a prospective study of children initiating EEN or infliximab therapy for CD, we compared clinical outcomes using the pediatric Crohn’s disease activity index (PCDAI), growth improvement, endoscopic mucosal healing, and adverse effects. Data were measured at baseline and after 8 weeks of therapy. Results. We enrolled 26 children with CD; of whom, 13 were treated with infliximab, 13 with EEN. Clinical response (PCDAI) reduction ≥ 15 or final PCDAI ≤ 10 was achieved by 83.3% in the EEN group and 90.9% in the IFX group. Body mass index for age (BMIFA) z-scores were significantly increased in both groups (P<0.05). No significant differences were observed in PCDAI, height for age (HFA), or BMI recovery between two groups. Adverse effects were detected in 30.7% on infliximab and 0% on EEN. Mucosal healing was achieved in 71.4% cases in the EEN group versus 85.7% in the IFX group. Conclusion. EEN provided similar improvements as IFX in clinical symptoms, mucosal healing, and BMI. EEN therapy has less adverse effects when compared with IFX. This trial is registered with the Clinical Registration Number: ChiCTR-OON-17010834

    Differences in structural connectivity between diabetic and psychological erectile dysfunction revealed by network-based statistic: A diffusion tensor imaging study

    Get PDF
    IntroductionType 2 diabetes mellitus (T2DM) has been found to be associated with abnormalities of the central and peripheral vascular nervous system, which were considered to be involved in the development of cognitive impairments and erectile dysfunction (ED). In addition, altered brain function and structure were identified in patients with ED, especially psychological ED (pED). However, the similarities and the differences of the central neural mechanisms underlying pED and T2DM with ED (DM-ED) remained unclear.MethodsDiffusion tensor imaging data were acquired from 30 T2DM, 32 ED, and 31 DM-ED patients and 47 healthy controls (HCs). Then, whole-brain structural networks were constructed, which were mapped by connectivity matrices (90 × 90) representing the white matter between 90 brain regions parcellated by the anatomical automatic labeling template. Finally, the method of network-based statistic (NBS) was applied to assess the group differences of the structural connectivity.ResultsOur NBS analysis demonstrated three subnetworks with reduced structural connectivity in DM, pED, and DM-ED patients when compared to HCs, which were predominantly located in the prefrontal and subcortical areas. Compared with DM patients, DM-ED patients had an impaired subnetwork with increased structural connectivity, which were primarily located in the parietal regions. Compared with pED patients, an altered subnetwork with increased structural connectivity was identified in DM-ED patients, which were mainly located in the prefrontal and cingulate areas.ConclusionThese findings highlighted that the reduced structural connections in the prefrontal and subcortical areas were similar mechanisms to those associated with pED and DM-ED. However, different connectivity patterns were found between pED and DM-ED, and the increased connectivity in the frontal–parietal network might be due to the compensation mechanisms that were devoted to improving erectile function

    The Effect of Iron Oxide Magnetic Nanoparticles on Smooth Muscle Cells

    Get PDF
    Recently, magnetic nanoparticles of iron oxide (Fe3O4, γ-Fe2O3) have shown an increasing number of applications in the field of biomedicine, but some questions have been raised about the potential impact of these nanoparticles on the environment and human health. In this work, the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) with the same crystal structure, magnetic properties, and size distribution was designed, prepared, and characterized by transmission electronic microscopy, powder X-ray diffraction, zeta potential analyzer, vibrating sample magnetometer, and Fourier transform Infrared spectroscopy. Then, we have investigated the effect of the three types of magnetic nanoparticles (DMSA-Fe2O3, APTS-Fe2O3, and GLU-Fe2O3) on smooth muscle cells (SMCs). Cellular uptake of nanoparticles by SMC displays the dose, the incubation time and surface property dependent patterns. Through the thin section TEM images, we observe that DMSA-Fe2O3is incorporated into the lysosome of SMCs. The magnetic nanoparticles have no inflammation impact, but decrease the viability of SMCs. The other questions about metabolism and other impacts will be the next subject of further studies

    Scaling down the supply voltage of CPL circuits

    No full text

    1.06 µm picosecond pulsed, normal dispersion pumping for generating efficient broadband infrared supercontinuum in meter-length single-mode tellurite holey fiber with high Raman gain coefficient

    No full text
    We investigate efficient broadband infrared supercontinuum generation in meter-length single-mode small-core tellurite holey fiber. The fiber is pumped by 1.06µm picosecond pulses in the normal dispersion region. The high Raman gain coefficient and the broad Raman gain bands of the tellurite glass are exploited to generate a cascade of Raman Stokes orders, which initiate in the highly normal dispersion region and quickly extend to longer wavelengths across the zero dispersion wavelength with increasing pump power. A broadband supercontinuum from 1.06µm to beyond 1.70µm is generated. The effects of the pump power and of the fiber length on the spectrum and on the power conversion efficiency from the pump to the supercontinuum are discussed. Power scaling indicates that using this viable normal dispersion pumping scheme, 9.5 W average output power of infrared supercontinuum and more than 60% conversion efficiency can be obtained from a 1 m long tellurite fiber with a large mode area of 500µm2

    A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide

    No full text
    The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10−10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples
    corecore